Nehari Type Ground State Solutions for Asymptotically Periodic Schrödinger-Poisson Systems
نویسندگان
چکیده
منابع مشابه
Existence of Positive Ground State Solutions for a Class of Asymptotically Periodic Schrödinger-poisson Systems
In this article, by using variational method, we study the existence of a positive ground state solution for the Schrödinger-Poisson system −∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R, −∆φ = K(x)u, x ∈ R, where V (x),K(x) and f(x, u) are asymptotically periodic functions in x at infinity.
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملGround state solutions for an asymptotically periodic and superlinear Schrödinger equation
We consider the semilinear Schrödinger equation { −4 u+ V (x)u = f(x, u), x ∈ RN , u ∈ H1(RN ), where V (x) is asymptotically periodic and sign-changing, f(x, u) is a superlinear, subcritical nonlinearity. Under asymptotically periodic V (x) and a super-quadratic condition about f(x, u). We prove that the above problem has a ground state solution which minimizes the corresponding energy among a...
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2017
ISSN: 1027-5487
DOI: 10.11650/tjm/7784